		Ch	emist	ry I		
			002	653697 1270 (13		IT OF
8 th	Nov	2011	8.30)am-1	1.30	am

REPUBLIC OF RWANDA

RWANDA EDUCATION BOARD

(15 marks)

ORDINARY LEVEL NATIONAL EXAMINATIONS 2011

SUBJECT : CHEMISTRY I

TIME

: 3 HOURS

INSTRUCTIONS:

- This paper consists of THREE Sections A, B and C.
- Answer ALL the questions in section A. (55 marks) Answer THREE questions in section B. (30 marks) Answer only **ONE** question in section C.
- You do not need the Periodic Table.
- Calculators may be used.

	SECTION A: Attempt all questions. (55	5 marks)
	1. Some oxides of period 3 of the periodic table are: Na_2O , Al_2O_3 and SO_3 . (a) From the list choose and write down the formula of an oxide which is:	
	(i) Acidic (ii) Basic (iii) Amphoteric	(1 mark) (1 mark) (1 mark)
	• (b) Write a balanced equation to show the reaction between the basic oxide and wa	ater.(2 marks)
	2. The following list shows the chemical formulae of some ions: Na ⁺ , Al ³⁺ , Zn ²⁺ , Br ⁻ and O ²⁻ . Use the list to write down the chemical formula of:	
·	(a) Sodium phosphate(b) Aluminium oxide(c) Zinc bromide	(1 mark) (1 mark) (1 mark)
	3. Silicon (atomic number 14) combines with chlorine (atomic number 17) to form compound A.	
	 (a) Write the electronic configuration of silicon. (b) Using a "dot" and a "cross" diagram and the symbols Si(silicon) and Cl (chloridraw a diagram to show the bonding in the compound formed between Si and Use electrons in the outer shell only. 	
é	(c) Would you expect the compound in (b) to conduct electricity when in molten state? Explain your answer.	(2 marks)
4	4. C_5H_{12} is an organic compound which is a member of the homologous series of alk	
	 (a) What is the name of C₅H₁₂? (b) Give the formula of an alkane with 7 C atoms. (c) Alkanes are examples of fossil fuels. Explain one environmental problem 	(1 mark) (1 mark)
5	caused by the burning of alkanes. Magnesium sulphate crystals (MgSO ₄ .7H ₂ O) were prepared by reacting excess magnesium oxide and sulphuric acid.	(2 marks) 23
	 (a) Write an equation for the reaction of magnesium oxide with sulphuric acid to form magnesium sulphate. (b) Why was excess magnesium oxide used? (c) Calculate the percentage of oxygen by mass in the compound MgSO₄.7H₂O (Mg = 24, S = 32, O = 16, H = 1 	(2 marks) (1 mark)
6	manganese. (a) Calculate the mass of oxygen in the oxide of manganese.	(1 mark)
	 (b) Calculate the number of moles of: (i) Manganese (Mn) atoms (ii) Oxygen (O) atoms, and then 	(1 mark) (1 mark) (1 mark)
7. *	 (c) Determine the empirical formula of the oxide of manganese. An alcohol has molecular formula C₃H₈O. (a) Write down the formula of the functional group in alcohols. (b) Write down the structural formulae of two possible isomers which are alcohols with molecular formula C₃H₈O. 	(1 mark)
	(c) Give the name of one of the isomers in (b).	(1 mark)
8.	A concentrated solution of sodium chloride was electrolyzed, using carbon (graphi	
		Page 40 of 135

	o or
(a) List all the ions present in aqueous sodium chloride by giving their formulae	(2 marks
(b) What is produced at the cathodes?	(1 mark
(c) After electrolysis, the remaining solution was tested with red and blue litmu	S
papers. State and explain the expected observations.	(2 marks)
(IV) oxide (MnO ₂). After drying, it was collected by downward delivery.	ganese ®
(a) Write a balanced equation for the reaction of hydrochloric acid with	· ·
manganese (IV) oxide to produce chlorine, manganese (II) chloride and water	. (2 marks)
(b) How would you test for chlorine gas? Give the expected observation.	(2 marks)
(c) How is chlorine gas dried?	(1 mark)
(d) Suggest one precaution that would be taken while preparing chlorine gas in	the
laboratory?	(1 mark)
10. The structures of some organic compounds are given below: A: CH_3 - CH_2 - $CH = CH_2$ B: CH_3 - CH_2 - CH_2 - OH	×
C: CH_3-CH_2-COOH D: $CH_3-CH_2-CH_3$.	
(a) Which of these compounds is:	(
(i) An alkane?	(1 mark)
(ii) A carboxylic acid?	(1 mark) (1 mark)
(iii) An alcohol?(b) Which of the compounds would react with sodium carbonate?	(1 mark) (1 mark)
(c) B and C were reacted together. What class of organic compounds is produced	. ,
reacting B and C ?	(1 mark)
11. Separation of some mixtures can be carried out by some methods below: fraction	, ,
distillation, simple distillation, filtration, and chromatography. Select a method	
would be used to separate:	·
(a) Components of chlorophyll.	(1 mark)
(b) Kerosene and petrol (gasoline).	(1 mark)
(c) Copper (II) hydroxide from a precipitate of copper (II) hydroxide and water.	(1 mark)
(d) Pure water from sea water.	(1 mark)
12. Ammonia (NH ₃) is an important chemical used to manufacture other products s as fertilizers and nitric acid.	uch
(a) Write a balanced equation to show the formation of ammonium nitrate from	
ammonia and nitric acid.	(2 marks)
(b) State one pollution problem associated with nitrate fertilizers.(c) Ammonia salts usually sublime when heated.	(1 mark)
(i) What is meant by sublimation?	(1 mark)
(ii) Write an equation to show the products of heating ammonium chloride.	(1 mark)
SECTION B: Attempt any three questions.	(30 marks)
13. Hydrogen peroxide was mixed with manganese (IV) oxide to produce oxygen gas. gas was collected in several gas jars so that some experiments could be carried of	The 🌯
 (a) What is the role of manganese (IV) oxide (MnO₂) in this experiment? (b) How is oxygen gas tested? Describe the test and the expected observation. (c) The elements sodium and sulphur were burned separately in gas jars containing oxygen. The product in each gas jar was mixed with water and the mixture share resulting solution was tested with litmus paper. Write a balanced equation to solve the solution of the solution of the solution of the solution of the solution was tested. 	aken. The
	Page 41 of 135
	an an sea an Start an sea

- (i) How each element reacts with oxygen.
- (ii) How each product in (i) reacts with water.
- (d) State the observation made when the product of burning sulphur in oxygen was
- shaken with water and tested blue litmus paper.
- 14. Drinking water was suspected to have been contaminated by some salts. It was tested to identify some ions which were suspected to be present. The following tests were carried out: One sample was identified with nitric acid and then barium nitrate was added. A white precipitate was observed. Another sample was mixed with nitric acid and then silver nitrate was added. A white precipitate was observed. A third sample was mixed with sodium
 hydroxide and there was no observable change.
 - (a) Which ion was identified by the test with barium nitrate? Write an ionic equation to show the formation of the white precipitate. (3 mark
 - (b) Which ion was identified by the test with barium nitrate? Write an ionic equation to show the formation of the white precipitate. (3 marks)
 - (c) Suggest two possible cations which could have been present as shown by the test using sodium hydroxide. (2 marks
 - (d) Suppose the water contained some ammonium ions. What test would confirm the
 - presence of NH₄⁺ ions?
- 15. The chat below shows some reactions starting with ethene.

A

$$B \longleftarrow H - C = C - H \longrightarrow D (- CH_2 - CH_2 -)_n$$

$$HCl_{(g)}$$

$$HCl_{(g)}$$

$$HCl_{(g)}$$

$$H - C = C - H \longrightarrow D (- CH_2 - CH_2 -)_n$$

$$HCl_{(g)}$$

$$H_{2(g)}$$

$$H_{2(g)}$$

- (a) Give the structure and name of each of the compounds **A**, **B** and **C**.
- (b) What name is given to the type of reaction that produces compound D?
- (c) Give the name and the structural formula of the compound C_3H_6 .
 - (d) Bromine is used to test for organic compounds which contain C = C. What is observed in this test?
- 16. Sulphuric acid is manufactured in the contact process according to the steps shown below.I: Sulphur is burned in air (oxygen).
 - II: The product is reacted with more air (oxygen) in the presence of a catalyst to form sulphur trioxide.
 - III: Sulphur trioxide is absorbed in concentrated sulphuric acid and then diluted with water

	(a)	Give a balanced equation for the reaction in step I.	(Z marks)
		Give a balanced equation for the reaction in step II.	(2 marks)
		Name the catalyst used in step II.	(1 mark)
	(d)	Briefly explain why sulphur trioxide is not directly reacted with water.	(2 marks)
•		Some sulphur dioxide may escape into the atmosphere. Explain an environmen	ital
		problem this may cause.	(2 marks) 🏅
		Give one large scale use of sulphuric acid.	(1 mark) *
	(1)	Give one range scale use of surprivate used	

(2 marks)

(4 marks

(1 mark)

(2 marks)

(6 marks) (1 mark)

(2 marks)

(1 mark)

mostral

17. A sample of carbon dioxide was prepared and collected for further experiments	
gas was produced by mixing calcium carbonate with hydrochloric acid. It was over water.	s. The
	collected
(a) Write a balanced equation to show the reaction of calcium carbonate with hydrochloric acid.	
	(0)
 (b) Describe a chemical test for carbon dioxide, by stating the reagent and the expected observation for a positive result. 	(2 marks
(c) Carbon dioxide can be prepared by burning charcoal in air (owner)	(2 marks
	(1 mark)
(ii) What might be formed if the charcoal burns in insufficient air (oxygen)?(d) State two environmental problem caused by too much carbon dioxide in the atmosphere.	(1 mark)
	(2 marks)
(e) Carbon dioxide is used in some fire extinguishers. Give two properties of carb dioxide which enable it to be used as a fire extinguisher.	oon (2 marks)
SECTION C. Attempt on the second	(
SECTION C: Attempt only one question. (15 marks)	
18. A titration experiment was and in the second	
18. A titration experiment was carried out to determine the concentration of potassic hydroxide (KOH) and prepare crustels of notice	ım
KOH were neutralized by 24.50cm ³ of 0.1 mol/dm ³ sulphuric acid, using a suital indicator.	ble 🔹
(a) Write a balanced equation for the reaction of KOH and H_2SO_4 . (b) Calculate the number of moles of H_2SO_4 .	(2 marks)
(c) Calculate the number of moles of KOH in 25 cm^3 .	(2 marks)
(d) Calculate the concentration of KOH in mol/dm ³ .	(2 marks)
(e) Calculate the mass of KOH that was dissolved in 1dm ³ of solution. (K = 39, $\Omega = 16$, H = 1)	(2 marks)
(K = 39, O = 16, H = 1)	. ,
(f) In order to prepare a sample of emotals of	(2 marks)
(f) In order to prepare a sample of crystals of potassium sulphate, 25cm ³ of KOH were mixed with 24.50cm ³ of 0.1mal/dm ³ and 1.	
were mixed with 24.50cm ³ of 0.1mol/dm ³ sulphuric acid without the indicator.	
Describe in details how a sample of crystals of the salt would be obtained from the solution.	
	(3 marks)
(g) Rubidium (Rb) is below potassium (K) in group I of the periodic table. How would you compare the reactivity of Rb with K? Explain your reason.	i í
J WIGHT IL DAVIAIL VOUT TRASOD	(2 marks)
9. The chart below shows some reaction of magnesium and its compounds.	
Cl _{2(g)} HCl _(aq)	.
$D \leftarrow Mg - Mg$	
\rightarrow A	
Heat	
VWater+ VBurn NaOur	
Na CO	
$Na_2CO_{3(aq)}$ in O_2	

E

(a) Identify the compounds A, B C, D and E either by names or by the chemical formula.

(b) In the reaction which produces compound A, a gas is produced also.

in O_2

¢←

- (i) Name the gas produced.
- (ii) Describe a chemical test for the gas.

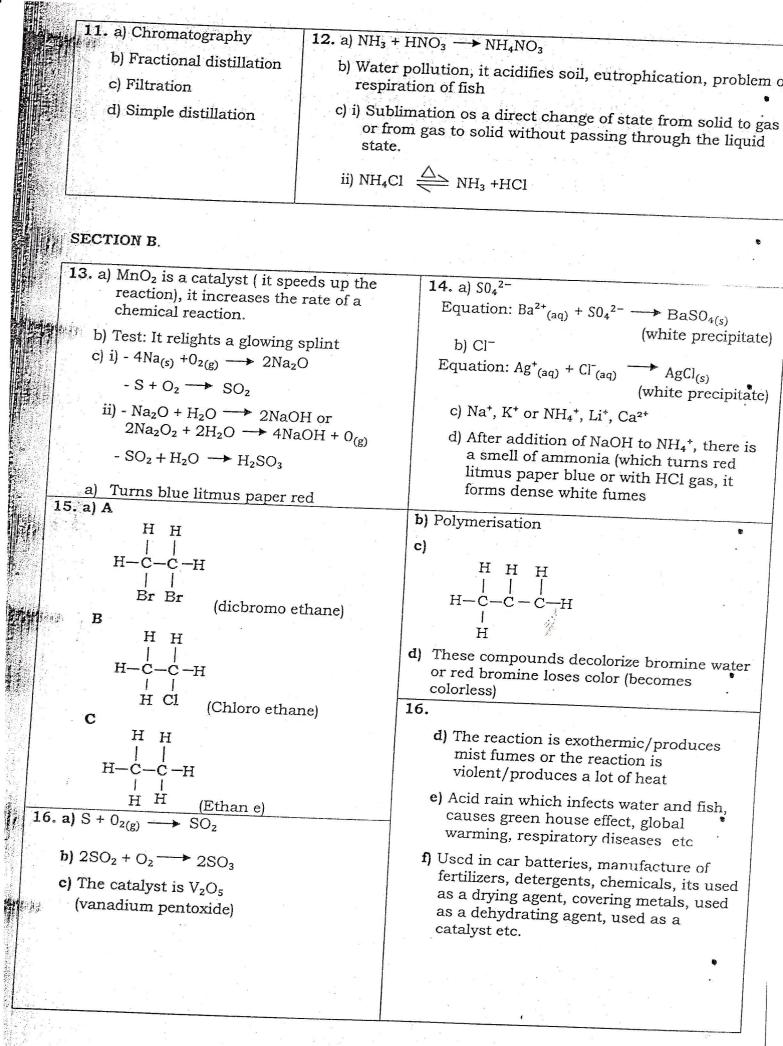
(c) Write a balanced equation for the reaction of compound A with $NaOH_{(aq)}$.

END.

B

(10 marks)

(1 mark)


(2 marks) (2 marks)

CHEMISTRY III 2011

SECTION A

	SEC			
1. a) i) Acidic - SO ₃	2. a) Na	3PO4	3. a) 2, 8, 4 or K ² L ⁸ M ⁴	14
ii) Basic - Na ₂ O	b) Al ₂	O ₃	b)	
iii) Amphoteric - Al ₂ O ₃	c) Znl	$3r_2$		
b) $Na_2O_{(s)} + H_2O_{(l)} \longrightarrow 2NaC_{(s)}$				
4. a) C_5H_{12} is pentane				2
b) C ₇ H ₆ or CH ₃ CH ₂ CH ₂ CH ₂	$CH_2 CH_2 CH_3$			j de
c) Air pollution, pollutant gases, global warm			Here and the second sec	
green hour effects, floods,	releases CO ₂ and			
5. a) MgO + $H_2SO_4 \longrightarrow MgSO_4$	$_{+}$ + H ₂ O		11-2	
b) Excess MgO was used to ens		1	c) SiCl₄ cannot conduct electr	icity
neutralization reaction is con acid is finished or used up.	nplete and also t	because it's a covalent compound,		
c) M.M of MgSO ₄ .7H ₂ O = $24+32$	+16×4+(7(2+16)=	=246g	it's a non-electrolyte and it	
M.M of oxygen = $(16 \times 4 + 10)$		1	ionize to set free ions.	
% of oxygen is $\frac{176}{246} \times 100 =$		5		6
6. a) $Mn_{(s)} + O_{2(g)} \longrightarrow MnO_{(s)}$		c) Em	pirical formula:	
11g 17.4g	- 6.4~		Mn O	
Mass of oxygen = $17.4 - 11$			n = 0.2 0.4	
b) i) Mn = n = $\frac{m}{Mm} = \frac{119}{559} = 0.2$ moles			$i_0 = \frac{0.2}{0.2}$ $\frac{0.4}{0.2}$	
ii) $O = n = \frac{m}{Mm} = \frac{6.4}{169} 0.4 \text{ mo}$	les	Empir	1 2 ical formula is MnO ₂	
7. a) 8	8. a) Na ⁺ , Cl ⁻ , H ⁺	and OF	1-	
b) i) CH ₃ - CH ₂ - CH ₂ - OH	b) Hydrogen ga	as or H	2	
ii) $CH_3 - CH - CH_3$ O	c) The red litm not affected an alkaline s	or char	er turns blue. The blue litmus pa ged. Reason: presence of NaOH	per is which is
c) – Propanol 9. a) 4 HCl + MnO₂ → Cl₂ + Mn	$Cl_2 + 2H_2O$	c) C	hlorine gas is dried using concen	
b) Test for chlorine:			sulphuric acid or an hydrous chl	loride
Turns moist blue litmus paper red and bleaches it.		d) The preparation of chlorine in the laboratory should be done in a fume		
 It changes acidified K₂Cr₂ green. It changes acidified KmnO 		C	upboard because it is poisonous.	
colorless.				
10. a) i) D or CH ₃ CH ₂ CH ₃		b) C		
ii) C or CH_3 - CH_2 - $COOH$,	c) Este	r or CH ₃ -CH ₂ -COOH ₂ CH ₃	
iii) B or CH ₃ -CH ₂ -CH ₂ -OH				
n an				
			(

Page 44 of 135 3

Page 45 of 135

 17. a) CaCO₃ + 2HCl → CaCl₂ + CO₂ + H₂O b) Use of lime water (calcium hydroxide solution) Observation: Lime water turns milky or white precipitate in excess carbon dioxide i.e forms a 	 d) It causes green house effect of global warming, causes bad air(air pollution), floods etc. e) - Its denser than air - It doesn't support combustion/burning
clear solution. c) i) $C_{(s)} + O_{2(g)} \longrightarrow CO_{2(g)}$	- Its not poisonous
• ii) Carbon monoxide	

SECTION C.

18. a) $2KOH + H_2SO_1 \longrightarrow K_2SO_1 + 2H_2O$	d) Concentration of KOH. In 25cm ³ of KOH → 4.9 × 10 ⁻³ moles
b) 0.1 moles means that:	
$1000 \text{ cm}^3 \text{ of } \text{H}_2\text{SO}_4 \longrightarrow 0.1 \text{ mol of } \text{H}_2\text{SO}_4$	$1 \text{ cm}^3 \text{ of KOH} \longrightarrow \left(\frac{4.9 \times 10^{-3}}{25}\right) \text{ moles}$
$1 \text{ cm}^3 \text{ of } \text{H}_2\text{SO}_4 \longrightarrow \left(\frac{0.1}{1000}\right) \text{ moles}$	25
1000^{-1000}	10×10-3
0.1	1000 cm ³ of KOH $\longrightarrow \left(\frac{4.9 \times 10^{-3}}{25} \times 1000\right)$
24.5cm ³ of H ₂ SO ₄ \longrightarrow $\left(\frac{0.1}{1000} \times 24.5\right)$ moles	
1000	= 0.196 moles
= 0.00245 moles	∴ Concentration of KOH = 0.196mol/dm ³
in a strong the set of the set	e) Mm of KOH = 39 + 16 + 1 = 56g
c) 2 moles of KOH \rightarrow 1 mole of H ₂ SO ₄ from	Mass = No. of moles × mm
the equation above: $2 \times 2.45 \times 10^{-3}$	= 0.196 × 56
$= 4.9 \times 10^{-3} \text{ moles}$	= 10.976g
f) Evaporation then followed by crystallization	g) Rubidium is more reactive than potassium
or evaporate a bit to remove the excess water	because reactivity of group I metals
and leave it covered with pierced paper to	increases down the group.
crystallize.	Or Rubidium is more electro positive than
	potassium.
19. a) $A = MgCl_2$ or Magnesium Chloride	Or Atomic radius of Rd is greater than
$B = Mg(OH)_2$ or Magnesium hydroxide	atomic radius of K. Number of shells of Rb is
	greater than number shells of K.
C = MgO or Magnesium oxide	b) i) Hydrogne gas or H ₂
$D = MgCl_2$ or Magensium Chloride	ii) Hydrogen gas is burnt in air and it
$E = MgCO_3$ or Magnesium Carbonate.	produces a pop sound.
. Ingoos of magnoorant carbonator	
	c) $MgCl_2 + 2NaOH \longrightarrow Mg(OH)_2 + 2NaCl$

END

Page 46 of 135

ALL BULL